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LETTER TO THE EDITOR 

Optimal storage of a neural network model: a replica 
symmetry-breaking solution 
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97119-900 Santa Maria, RS, Brazil 
t Instituto de Fisica, Universidade Federal do Rio Grande do SUI, Cah Postal 15051, 
90046-900 Port0 Alegre, RS, Brazil 
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AbslracL A break in replica symmetry is found above the critical line e.(.) for storage 
with a finite minimal fraction of errors, within the first stage of the Parisi scheme, for 
noiseles networks with continuous synapses. The replica symmetry-breaking solution 
yields the highest [most stable) minimal fraction of errom everywhere above a.(n). 

The storage properties arising from the collective behaviour of a neural network 
are determined by the set { .Iij} of synaptic Connections between neurons i and j; 
i, j = 1,2,. . . , N .  The patterns f p ,  /L = 1,. . . , p  are k e d  points of the network 
dynamics with sizeable basins of attraction if the set of local stabilities, defined by [I] 

obeys the inequalities 

for all the patterns, in the whole nehvork, in which IC is a non-negative parameter. 
The E r  are statistically independent random variables that assume, if unbiased, the 
values +1 or -1 with equal probability. 

The original approach by Gardner [l] considers the synapses as-dynamical 
variables. Given a storage level CY p / N  below a critical capacity, there is a finite 
fractional volume in configuration space where all the inequalities (2) are obeyed, 
together with the overall spherical constraint 

j 

in the case of continuous synapses. The critical storage capacity CY,(.) is attained 
when the fractional volume shrinks to zero. 
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The behaviour of the optimal network in the regime Q > crF has also been 
explored allowing for a finite fraction of violations of (2) [2-4]. This can be achieved 
by the introduction of cost functions that account for the fraction and extent of the 
violations. In the simplest case considered in this paper, the Gardner-Derrida m t  
function [2], that only penalizes violations regardless of their size, is given by 0 

where O(z) = 1 if z 2 0 and zero otherwise. The main issue addressed by Gardner 
and Derrida [2] is the minimal fraction fme of ill-stored patterns in each neuron for 
a given oi > a,(.). This amounts to finding the ground-state energy per pattern, 

in the large-p limit, where 

is the partition function in which p is an inverse temperature and the angular brackets 
denote the configuration average with the probability distribution for the random 
patterns. 

The configurational average which is performed by means of the replica method, 
via the relationship 

yields a stable replica-symmetric solution below a critical liie oiC(.), where fmin = 0, 
and within a bounded region above this liie where fmin > 0. The replica-symmetric 
solution becomes unstable beyond this region [2]. 

It has already been pointed out by Gardner and Derrida that, for continuous 
Jii, the space of solutions is connected whenever the mean fraction of errors in 
the stability relations (2) is zero, and that it could be disconnected if this fraction is 
positive. In terms of the overlaps 

between replicas Q and p, this means that there should be a single valley around the 
replica-symmetric overlap, q = qnp, in the first case, while the solutions could be 
made up of many valleys with different q P h ,  in the second case. 

Because of the great interest and the wide use that is made of nenvorks with the 
Gardner-Derrida algorithm with continuous Jij, it is important to establish if there is 
in fact, a relationship between replica symmetry breaking (RSB), i.e. a multiple-valley 
solution in a disconnected phase space, and a non-zero mean fraction of errors, and 
the purpose of the present article is to clarify this point, conjectured originally by 
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Gardner and Derrida. It is also our aim to obtain an estimate of the sue of the 
effect of RSB. The relevance of RSB has only been established, so far, for the case of 
discrete Jij  = rtl [SI. 

It will be shown here that there is a broken-symmetly solution in the replica 
space everywhere beyond a,(.), and that this solution tends continuously to the 
replica-symmetric solution as the critical line is aproached from above. 

We take the formal results of Gardner and Derrida for the Jij  phase-space 
calculation in the large-N limit [2], that yields 

and 

Here, indices a and p denote replicas, while 4,p and E ,  are Lagrange multipliers 
that introduce the spherical constraint and the overlaps (8)  respectively. The 
parameters are to be determined by the saddle-point equations 

There are locally stable symmetric solutions q = qa@, for all a, p, for the 
physically interesting overlaps in the regime below a,(.), and in a restricted region 
above, bounded by a de Almeida-Thouless stability line beyond which the replica- 
symmetric solution becomes unstable. 

Next, we take the first step of the Parisi RSB scheme [6,7] in which the n replicas 
are divided into identical n / m  groups of m replicas each, m being first an integer 
which is then continued to the range 0 < m 4 1 in the limit TI + 0. The matrbc 
elements qea take the value q1 if a and p belong to the same group of replicas and 
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qu otherwise. Correspondingly, pop takes the values 4 and 4 in the first and the 
second case, respectively. 

In the limit n + 0 the solutions of the saddle-point equations for 4, q; and 
e = cm can be eliminated in favour of the remaining g,, q1 and m, leading to 

where 

and 

in which 
r m  

H ( x ) = J =  Dz 

In the limit p 3 CO, to which we restrict ourselves in the following, we look for 
solutions with q1 + 1, through the variable I = Jw. The solutions are 
minima in q,, gl and m [7]. Note that the replica-symmetric solution of Gardner 
and Derrida [2] is recovered when qu = q1 and m + 0. In order to reach a finite 
minimal fraction of errors 

we need also that m + 0, in such a way that pm is finite. 
Thus, in the limits g1 -t 1, m 0 and p --t 00, (14) becomes 
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The numerical solutions to the saddle-point equations for qo, q1 and m are shown 
in figures 1-3, for various values of IC in the region above the critical l i e  a, (n) .  
Clearly, there is an RSB solution that departs continuously from the symmetric solution 
as a is increased, starting from ~ J I c ) .  As a -+ a,(.), qo -+ q1 and x -+ 00, in 
amrdance with the result of Gardner and Derrida, while the new variable M goes 
to infinity. On the other hand, an analytical result in the large-a limit yields 

ii 

and 

where 

and 

% = e -  2 1 2  . 

0.70 1 I 
00 1.0 20 30 a 

Figure 1. Saddle-point value of as a function of a = p J N ,  for i h m  values of I( 
(A, n = 0; B, n = 0.5; C, n = 1.0). The a m  pinis 10 the value of a where the 
symmetric solution becomes unstable. 

In figure 4 we display the numerical results for the minimal fraction of errors, 
fmin, with RSB, which starts to grow continuously at ~ ( I c ) ,  and we compare it with 
the symmetric solution. Thus, our results'confirm the expectation, referred to earlier 
in this paper, that disconnected regions in phase space appear continuously with a 
growing fraction of errors. Although the appearance of these regions associated with 
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Figure 2. Saddle-point value of z = [2p(1 - 91)]1/2 as a function of a, for three 
values of K (A, K = 0; B, IC = 0.5; C, IC = 1.0). Full curves correspond to the RSB 
solution, while broken cuwes correspond to the symmetric solution. The arrows point 
to the values of a where the symmelric solution becomes unstable. 
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Figure 3. Saddle-point value of M as a function of a, for three values of K (A, I( = 0; 
B, K = 'OS;  C, K = 1.0). The arrows point to the values of o where the symmetric 
solution becomes unstable. 

RSB requires a higher energy, that is a larger fmin than that for the symmetric case, 
we interpret the RSB solution, within the first step of the Parisi scheme, to be the 
correct solution. This is in spite of the statement demonstrated in spin-glass theory 
that, whenever there is a first-order transition with two (or more) stable solutions, 
one has to choose the one of lowest energy [8,9]. The situation here is somewhat 
similar to that of the Potts spin-glass, where thermodynamic consistency forces one 
to choose the solution of higher energy [S, 101. Had we chosen the lower energy 
(replica-symmetric) solution in our case, whenever it is stable below the de Almeida- 
Thouless stability limit, it would be thermodynamically impossible to reach the RSB 
solution beyond that limit, since there is a finite (free) energy difference between the 
two solutions. Rather, the transition from the replica-symmetric to the RSB mode 



Letter to the Editor L67 

Figure 4. Minimal fraction of e r "  as a function of a, for the same values of tc 
as in the previous figures. The full CUN- represent the sIable RSB solution, while the 
broken curves correspond to the replica-symmetric solution below the stability limit and 
the dotted curves to the continuation of this solution a& 

takes place as soon as fmin starts to grow from zero. 
It is worth noting that the RSB solution obtained in this work amounts to a finite 

break in replica symmetry while the usual replica-symmetric solution is stable to small 
symmetry-breaking perturbations. 

Although we have not carried out the calculation for the second step of the Parisi 
MB scheme, we expect the same qualitative results as those shown here within the 
frrst step. 

In distinction to the case of discrete Ji .s, where RSB is necessary in order to yield 
a non-negative entropy near saturation [St, we need not report here on the effects 
of the RSB on the entropy for continuous J l j s  which can be negative. Rather, there 
are two interesting directions in which the present work can be extended. One is 
an analysis for finite p, to see when RSB may be disregarded, and the other is for 
correlated patterns that have been studied in a recent work 1111. These issues are 
being investigated at present 

'Ib summarize, we have shown here that there is a break in replica symmetly above 
the critical line a,(.) in the network with continuous Jij  and that the corresponding 
multiple-valley picture appears as the more stable solution with a larger minimal 
fraction of errors than for the symmetric solution. 
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